
Computer lab, Bioinformatics: Omics data analysis

Perry Moerland

Tuesday, February 23, 2021

In these computer exercises you will mainly use the statistical software package R. Since we will focus on the
interpretation of the results, no previous exposure to R is required. If you want to learn more about R, see
our biannual AMC Graduate School course Computing in R.

The goal of this computer lab is to give you an overview of the techniques typically applied when analyzing
omics data:

• Unsupervised methods: clustering
• Quality control and normalization
• Differential expression analysis: statistical tests, multiple testing

First download the Rmd (Rmarkdown) file and open it in RStudio (Alle programma’s - R - RStudio, and
‘Ignore Update’). If you didn’t do so yet, first install the different packages that we’ll need. In order to
execute R code from within RStudio, just click the green arrow head in the chunk of code shown below or
put the cursor somewhere in the chunk and select Run - Run Current Chunk from the menu. You can also
execute code line-by-line using Ctrl-Enter:
If you didn't do so yet, first install the required packages. The commented line
is needed for the L0 desktops, but can be skipped on other systems
#.libPaths("C:/Scratch")
Installation of packages might take a few minutes
If in the console you are asked "Update all/some/none? [a/s/n]:". Just reply "n"
install.packages("BiocManager")
BiocManager::install(c("affy","arrayQualityMetrics","bioDist","genefilter","GenomeInfoDbData",

"hgu133acdf","limma","tibble","mclust","ClassDiscovery"))

Now load the libraries so that you can use the functions defined in them:
library(affy)
library(arrayQualityMetrics)
library(bioDist)
library(ClassDiscovery)
library(genefilter)
library(limma)
library(mclust)

1 Unsupervised methods
Unsupervised learning methods aim at detecting structures in data. The term unsupervised refers to the fact
that these methods do not use gene or sample annotations, only the (normalized) gene expression values
are used. A primary purpose of such methods is to group similar data together (clustering) and provide
a visualization of the data in which structures can easily be recognized. These may be relations among
genes, among samples, or even between genes and samples. The discovery of such structures can lead to the
development of new hypotheses, e.g., the grouping of genes with similar expression profiles may indicate that

1

https://bioinformatics.amc.nl/education/gs-computing-in-r/
http://bioinformatics.amc.nl/wp-content/uploads/gs-bioinformatics/OmicsData/Day2.rmd

they are co-regulated and are possibly involved in the same biological process. If one looks at samples instead
of genes, the separation of expression profiles of patient tissue samples may point to a possible refinement of
disease taxonomy. On the other hand, unsupervised methods are often used to confirm known differences
between genes or samples. If a clustering algorithm groups samples from two different tumor types into
distinct clusters, this provides evidence that the tumor types indeed show clearly detectable differences in
their global expression profiles.

As you might have noticed, in the above the word similar was used several times. This is really a central
concept in unsupervised learning be it clustering or visualization. In clustering one wants to group similar
objects together, whereas in visualization one wants to find a representation of a high-dimensional data set in
two or three dimensions while loosing as little information as possible: objects that are similar in the original
data space should also be similar in the low-dimensional space.

Assume that we performed a mini-experiment with four samples (A,B,C,D) and four genes per sample. The
resulting data set has been checked for low-quality samples and has been properly normalized. The resulting
log-ratios are given in file hcexample.txt. Download this file and save it in the same folder as the current
Rmd file.

The following piece of R code reads in hcexample.txt and then plots the sample profiles:
E <- read.table("hcexample.txt")
matplot(E,type="l",col=1:4,lty=1:4,lwd=3,xlab="Gene",ylab="log2-ratio",xaxt="n")
axis(1,1:4)
legend(3.3,2.8,c("A","B","C","D"),lty=1:4,col=1:4,lwd=3,y.intersp=1,cex=1.3)

−
2

−
1

0
1

2
3

4

Gene

lo
g2

−
ra

tio

1 2 3 4

A
B
C
D

Cluster algorithms group similar data together. What is meant by the word similar is formally defined by
the notion of a distance. In R, the bioDist package gives a collection of functions for calculating distance
measures. We will have a look at two of them in more detail.

Calculate the Euclidean (euc) and the Pearson sample correlation (cor.dist) distance between the sample
profiles.

2

http://bioinformatics.amc.nl/wp-content/uploads/gs-bioinformatics/OmicsData/hcexample.txt

Note that you have to transpose (t) the data matrix E since pairwise distances
are calculated for rows of a matrix
d.euc <- euc(t(E))
d.euc

A B C
B 2.00000
C 10.00000 10.19804
D 10.19804 10.00000 2.00000

d.cor <- cor.dist(t(E),abs=FALSE)
d.cor

A B C
B 2
C 0 2
D 2 0 2

Note that you can always obtain a detailed explanation of a function by typing ? followed by the name of
the function in the Console window, for example ?euc or ?cor.dist.

Question 1 Can you explain the resulting distance matrix when using the Pearson correlation distance?

Answer

Profiles of A and C, respectively, B and D are identical (correlation equals one) and therefore have
correlation distance equal to zero. Profiles of A and B, respectively, C and D are anti-correlated
(correlation equals minus one) and their correlation distance equals two.

Such a distance or dissimilarity matrix forms the basis for most clustering algorithms. In omics literature, an
agglomerative (i.e., bottum-up) hierarchical approach such as implemented in the hclust function is popular.
As explained in the lecture, hierarchical clustering tries to find a tree-like representation of the data in which
clusters have subclusters, which have subclusters, and so on. The number of clusters depends on in how much
detail one looks at the tree. Hierarchical clustering uses two types of distances:

• Distance between two individual data points (Euclidean, correlation etc.)
• Distance between two clusters of data points, also called linkage (single, average, etc.).

Question 2 Draw (just with pencil on paper) the dendrograms for both the Euclidean and the correlation
distance matrix generated above. Explain your results.

Answer

The dendrograms you drew should be similar to those generated by the few lines of R code below for
hierarchical clustering with average linkage. Note that the height of the branches indeed corresponds
to the distances calculated in the previous exercise.

R code

First specify that the two plots should be made on the same row
par(mfrow=c(1,2))
hc.euc <- hclust(d.euc, method="average");
plot(hc.euc,main="Dendrogram (Euclidean)",sub="Average linkage",hang=-1);
hc.cor <- hclust(d.cor, method="average");
plot(hc.cor,main="Dendrogram (Correlation)",sub="Average linkage",hang=-1);
par(mfrow=c(1,1))

3

A B C D

2
4

6
8

10

Dendrogram (Euclidean)

Average linkage
d.euc

H
ei

gh
t

A C B D

0.
0

0.
5

1.
0

1.
5

2.
0

Dendrogram (Correlation)

Average linkage
d.cor

H
ei

gh
t

One property of most clustering algorithms is that they always produce clusters. This happens regardless of
whether there is actually any meaningful clustering structure present in the data. Let us now simulate some
unstructured data (rnorm randomly generates data from a normal distribution) and see what happens.
1000 genes
n.genes <- 1000
50 samples
n.samples <- 50
Generate labels for the samples
descr <- paste("S", rep(c("0",""),times=c(9,41)), 1:50, sep="")
Fix the random seed to make the exercise reproducible
set.seed(13)
Matrix of expression data for 1000 genes and 50 samples
dataMatrix <- matrix(rnorm(n.genes*n.samples),nrow=n.genes)

Question 3 Use hclust with Euclidean distance and average, single, and complete linkage to cluster the
samples and plot the resulting dendrograms. First have a look at ?hclust and especially the examples at the
bottom of the help page to see how to use this function. If this goes beyond your current R skills, have a look
at the answers and just run the code given there.

Answer

4

First specify that the three plots should be made on the same row
par(mfrow=c(1,3))
The following code generates the three dendrograms
dEuc <- euc(t(dataMatrix))
hAvgEuc <-hclust(dEuc, method="average")
plot(hAvgEuc, labels=descr,cex=0.6)

hSinEuc <-hclust(dEuc, method="single")
plot(hSinEuc, labels=descr,cex=0.6)

hComEuc <-hclust(dEuc, method="complete")
plot(hComEuc, labels=descr,cex=0.6)
Back to default
par(mfrow=c(1,1))

S
05

S
20

S
36

S
42

S
16

S
37

S
47

S
01

S
30

S
14

S
09

S
13

S
12

S
25

S
33

S
41

S
04

S
34

S
02

S
11

S
45

S
10

S
07

S
23

S
27

S
48

S
32

S
19

S
44

S
08

S
31

S
17

S
43

S
29

S
40

S
21

S
38

S
46

S
22

S
18

S
03

S
49

S
15

S
28

S
26

S
50

S
24

S
35

S
06

S
39

42
43

44
45

46

Cluster Dendrogram

hclust (*, "average")
dEuc

H
ei

gh
t

S
16

S
42

S
05

S
36

S
20

S
37

S
47

S
24

S
39

S
04

S
02

S
35

S
22

S
34

S
11

S
45

S
32

S
33

S
27

S
48

S
15

S
08

S
31

S
10

S
01

S
30

S
25

S
06

S
12

S
17

S
43

S
41

S
18

S
13

S
07

S
23

S
49

S
14

S
09

S
28

S
03

S
21

S
26

S
29

S
40

S
50

S
19

S
44

S
38

S
4642

.0
42

.5
43

.0
43

.5
44

.0

Cluster Dendrogram

hclust (*, "single")
dEuc

H
ei

gh
t

S
36

S
42

S
33

S
22

S
28

S
26

S
50

S
21

S
38

S
46

S
08

S
31

S
24

S
19

S
44

S
17

S
43

S
04

S
29

S
40

S
35

S
06

S
39

S
32

S
27

S
48 S

09
S

13
S

41
S

14
S

18
S

05
S

15
S

02
S

11
S

45
S

10
S

07
S

23
S

16
S

47
S

03
S

49
S

01
S

30
S

12
S

25
S

20
S

34
S

37

42
43

44
45

46
47

48

Cluster Dendrogram

hclust (*, "complete")
dEuc

H
ei

gh
t

Question 4 Which phenomenon do you see with single linkage? How might this make interpretation difficult?

Answer

The phenomenon you observe is called chaining. This is the sequential addition of single objects to
an existing cluster. Due to sequential addition of single objects, often no clear cluster structure is
obtained.

Question 5 The complete linkage dendrogram seems to show some structure in the data and you might
decide that four clusters can be discerned. Is this structure real?

Answer

Since the data generated was completely random, this is very unlikely.

This figure shows the gene profiles of another synthetic data set which is slightly closer to biological reality.
The black line in the left-hand figure depicts one single gene expression profile and the vertical black line in the

5

right-hand figure illustrates how the black gene expression profile is constructed: the gene expression levels of
the same spot (=gene) over multiple microarray experiments are taken. Only ten arrays are considered in this
simulated dataset. Therefore, the left-hand figure has ten experiments on the x-axis. The data set consists of
nine different profiles; round each profile 50 noisy profiles were generated. Therefore, each simulated array
contains 9*(50+1)=459 different profiles. The log-ratio of these gene profiles is indicated on the y-axis.

Download the corresponding data file jq.txt and save it in the same folder as the current Rmd file.

Question 6 When clustering the genes with the Euclidean distance, how many clusters would you expect?

Answer

Given the way the data has been generated (see figure), you would expect nine clusters, corresponding
to each of the nine bands. In the heatmap below one can clearly recognize the characteristic
up-and-down patterns and the expression levels of each of the bands.

R code

jq.data <- read.table("jq.txt")
heatmap(as.matrix(jq.data),Colv=NA,scale="none",labRow=NA,col=blueyellow(64))

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

Question 7 Which values can the argument scale of the function heatmap take (hint: ?heatmap)? Explore
the influence of the argument scale. Can you explain the heatmap obtained with scale="row"?

Answer

The argument scale can take the values “none”, “column” and “row”. With scale="row" the
expression values are centered (to mean zero) and scaled (to standard deviation one) the row direction.
The structure of the dendrogram is identical to the one in the previous heatmap. The argument
scale only affects the visualization of the values. An unwanted side effect can be observed in the
topmost cluster. This corresponds to a group of genes with comparable expression values, but scaling
inflates their variability and less clearly illustrates the underlying structure of the data.

6

https://bioinformatics.amc.nl/wp-content/uploads/gs-bioinformatics/OmicsData/jq.txt
https://bioinformatics.amc.nl/wp-content/uploads/gs-bioinformatics/OmicsData/jq.jpg

R code

heatmap(as.matrix(jq.data),Colv=NA,scale="row",labRow=NA,col=blueyellow(64))

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

Until now we determined the number of clusters ‘by eye’. There are many methods to choose the optimal
number of clusters for a given clustering solution. A simple graphical procedure is to plot the heights of the
branches of a dendrogram:
Plot the height of the 20 branches closest to the root of the tree
plot(rev(hclust(euc(as.matrix(jq.data)))$height)[1:20],

main="height of the branches of the dendrogram",type="l",ylab="height")

7

5 10 15 20

2
4

6
8

10
12

14

height of the branches of the dendrogram

Index

he
ig

ht

Question 8 How can you use this curve to determine the number of clusters?

Answer

Determine where the curve becomes flatter (remember the fusion graph from the lecture). This
corresponds to the point where the data is not structured anymore and in this case indeed suggests
that there nine clusters. On random data such as the dataMatrix generated earlier, one would expect
a gradually decreasing curve without a clear hinge point, which is indeed the case.

R code

Plot the height of all branches
plot(rev(hclust(euc(t(dataMatrix)),method="complete")$height),

main="height of the branches of the dendrogram",type="l",ylab="height")

8

0 10 20 30 40 50

42
43

44
45

46
47

48

height of the branches of the dendrogram

Index

he
ig

ht

2 Quality control
Let us now have a look at a real microarray dataset. We are going to analyze data from a human patient
study comparing the transcriptome of women with preeclampsia (n = 12; 24-36 wk) vs. samples from women
who delivered due to preterm labor with no evidence of infection (n=11; 24-36 wk) (Winn et al., 2009) The
study was performed using the HG-U133A&B Affymetrix GeneChip platform and data is publicly available
from the GEO Expression Omnibus (GEO) with accession number GSE14722. Have a look at the GSE record
and also at one of the GSM records, for example GSM367781.

We will start with retrieving the raw Affymetrix data as stored in the CEL files for the HG-U133A chips. This
can be done as follows (might take a few minutes, depending on your internet connection; time for coffee!).
Download raw data from GEO
Normally this can be done via the lines of code that are commented out, but
this option is sometimes blocked. Therefore we download both files 'manually'.
#library(GEOquery)
#getGEOSuppFiles("GSE14722")
The CEL files are downloaded and stored in folder GSE14722 as a tar archive
dir.create("GSE14722")
setwd("GSE14722/")
if (!file.exists("GSE14722_RAW.tar")){

download.file("ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE14nnn/GSE14722/suppl/GSE14722_RAW.tar",
destfile="GSE14722_RAW.tar",mode="wb")

download.file("ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE14nnn/GSE14722/suppl/filelist.txt",
destfile="filelist.txt")

}
If the next line gives an error (GSM367781.CEL.gz: Can't create ...) use the Windows program 7-Zip
with 'Uitpakken (hier)'
untar("GSE14722_RAW.tar")

Read in the gzipped CEL files for the 23 HG-U133A chips

9

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630905/?report=reader
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14722
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367781

tab <- read.delim("filelist.txt")
affybatch <- ReadAffy(filenames=as.character(tab[2:24,"Name"]))
Add sample annotation, in this case 'by hand' so to speak
pData(affybatch) <- data.frame(condition=c(rep("preterm",11),rep("preeclampsia",12)),

pData(affybatch))
You might want to verify the sample annotation with the information available
at GEO to be sure that we did not make any mistake
pData(affybatch)

condition sample
GSM367781.CEL.gz preterm 1
GSM367782.CEL.gz preterm 2
GSM367783.CEL.gz preterm 3
GSM367784.CEL.gz preterm 4
GSM367785.CEL.gz preterm 5
GSM367786.CEL.gz preterm 6
GSM367787.CEL.gz preterm 7
GSM367788.CEL.gz preterm 8
GSM367789.CEL.gz preterm 9
GSM367790.CEL.gz preterm 10
GSM367791.CEL.gz preterm 11
GSM367792.CEL.gz preeclampsia 12
GSM367793.CEL.gz preeclampsia 13
GSM367794.CEL.gz preeclampsia 14
GSM367795.CEL.gz preeclampsia 15
GSM367796.CEL.gz preeclampsia 16
GSM367797.CEL.gz preeclampsia 17
GSM367798.CEL.gz preeclampsia 18
GSM367799.CEL.gz preeclampsia 19
GSM367800.CEL.gz preeclampsia 20
GSM367801.CEL.gz preeclampsia 21
GSM367802.CEL.gz preeclampsia 22
GSM367803.CEL.gz preeclampsia 23

setwd("..")

The affybatch object contains the measured intensity for each of the probes on each array:
affybatch

#

AffyBatch object
size of arrays=712x712 features (27 kb)
cdf=HG-U133A (22283 affyids)
number of samples=23
number of genes=22283
annotation=hgu133a
notes=

Question 9 Can you explain why on each array there are far more features (probes) than genes?

Answer

Affymetrix uses probesets to target genes. These probesets consist of multiple probes (on this chip in
general 11) positioned randomly on the array. Moreover, probes come in pairs of a perfect match

10

(PM) and a mismatch (MM) probe.

Quality control (QC) is crucial for any scientific method producing data and microarrays are no exception.
We will now investigate some QC pipelines for (Affymetrix) microarrays in more detail.

The arrayQualityMetrics package produces, through a single function call, a comprehensive HTML report
of quality metrics about a microarray dataset. The aim of the arrayQualityMetrics package is to produce
information that is relevant for your decision making - not, to make the decision. It will often be applied to
two, somewhat distinct, use cases:

1. Assessing quality of a raw dataset, in order to get feedback on the experimental procedures that
produced the data;

2. Assessing quality of a normalised dataset, in order to decide whether and how to use the dataset (or
subsets of arrays in it) for subsequent data analysis.

Let us apply arrayQualityMetrics to our raw Affymetrix data (might take some time . . .):
do.logtransform: data still has to be log-transformed
intgroup: add 'condition' (preeclampsia/preterm) as a factor of interest
if (!dir.exists("aQ_raw")){

arrayQualityMetrics(affybatch,outdir="aQ_raw",do.logtransform=TRUE,spatial=FALSE,
intgroup="condition",force=TRUE)

}

When the function arrayQualityMetrics is finished, a report is produced in the directory specified by
the function’s outdir argument. You can also download the zipped directory and unzip it. The resulting
directory contains an HTML page index.html that can be opened by a browser. The report contains a
series of plots explained by text. Some of the plots are interactive. Technically, this is achieved by the use of
SVG (scalable vector graphics) and JavaScript, and it requires that you use a recent (HTML5 capable) web
browser. In the case of AffyBatch input, some Affymetrix specific sections are added to the standard report.

Question 10 Which arrays are detected as outliers and based on which criteria?

Answer

Arrays 2, 6, 13 and 20 are consistently identified as outliers based on 4 out of 5 criteria (see ‘Array
metadata and outlier detection overview’). They show a much lower signal (see Figures 4 and 6) than
the other arrays. Array 3 is identified as an outlier based on its Relative Log Expression (RLE).

Question 11 Figure 12 in the arrayQualityMetrics report shows an RNA degredation plot. As you can see,
the measured intensity is higher at the 3’-end than at the 5’-end. Can you explain this effect?

Answer

RNA degradation usually happens faster at the 5’-end. The 3’-end has a protective poly-A signal
which slows down degradation from that side of the mRNA.

Several other R packages have been developed for QC of Affymetrix arrays. These were conveniently wrapped
into the web server Arrayanalysis.org (Eijssen et al., 2013) before Maastricht University got hacked (seriously,
no kidding!). Via the ‘Get started’ tab of Arrayanalysis.org I submitted a zip file of the 23 CEL files and ~15
minutes I received a mail with a detailed QC report. Investigate the report in more detail.

Question 12 Do the results of the Arrayanalysis.org report confirm those obtained with arrayQualityMetrics?

Answer

Yes, based on various criteria arrays 2, 6, 13 and 20 are consistently identified as outliers. See for

11

https://bioinformatics.amc.nl/wp-content/uploads/gs-bioinformatics/OmicsData/aQ_raw.zip
http://www.arrayanalysis.org/
http://nar.oxfordjournals.org/content/41/W1/W71.long
https://bioinformatics.amc.nl/wp-content/uploads/gs-bioinformatics/OmicsData/qc_report_GSE14722_2015-02-12_15-49_44_0.pdf

example the ‘Summary of raw data quality indicators’ on p.4 of the report.

You might wonder whether these between-array differences can be corrected for by normalization. Let us
normalize the raw data using RMA and then generate an arrayQualityMetrics report for the normalized data:
Normalization using RMA
eset <- rma(affybatch)

Background correcting
Normalizing
Calculating Expression

if (!dir.exists("aQ_norm")){
arrayQualityMetrics(eset,outdir="aQ_norm",intgroup="condition",

force=TRUE)
}

Question 13 Open the file index.html in the folder aQ_norm. Are the arrays 2, 6, 13 and 20 also outliers
according to this report?

Answer

No, the only outlier that is detected is array 18 according to the boxplots (Figure 4). This seems an
artifact of the method used by arrayQualityMetrics to determine outliers. However, inspecting the
principal component analysis (PCA) plot (Figure 3) still shows that arrays 2, 6, 13 and 20 clearly
stand out on the second principal component. The dendrogram of the RMA normalized data on p.31
of the Arrayanalysis.org report also shows this. This seems to indicate that in this case normalization
cannot correct for the between-array differences already observed in the raw data.

Question 14 Finding the technical reasons for such systematic differences between arrays often requires some
detective work. Here, the table ‘Array metadata and outlier detection overview’ in the arrayQualityMetrics
provides a clue. Can you find a likely explanation for the fact that arrays 2, 6, 13 and 20 were detected as
outliers?

Answer

The column ScanDate of the table shows that these four arrays were the only arrays scanned on
02/26/04. We don’t have any further information of the way samples were handled in this experiment,
but given the wide range of different scan dates (from 02/26/04 till 03/10/05) it is very likely that
RNA isolation, sample preparation, hybridization, reagent batch, chip batch, or lab technician were
different for this group of arrays. This can easily lead to such systematic differences between groups
of arrays, a phenomenon commonly referred to as a batch effect.

This begs the question whether also for the other dates less pronounced batch effects can be observed. For
this purpose we regenerate an arrayQualityMetrics report but now including information about the scan
dates throughout:
Create a vector of scandates
pData(eset)$scandate <- sapply(protocolData(eset)$ScanDate,function(x) strsplit(x," ")[[1]][1])
pData(eset)$scandate

[1] "02/11/05" "02/26/04" "11/10/04" "02/11/05" "08/25/04" "02/26/04"
[7] "03/10/05" "03/10/05" "02/11/05" "11/10/04" "11/10/04" "11/10/04"
[13] "02/26/04" "02/11/05" "11/10/04" "11/10/04" "11/10/04" "08/25/04"
[19] "11/10/04" "02/26/04" "03/10/05" "02/11/05" "02/11/05"

12

if (!dir.exists("aQ_norm_batch")){
arrayQualityMetrics(eset,outdir="aQ_norm_batch",intgroup=c("scandate","condition"),

force=TRUE)
}

The PCA plot (Figure 3) clearly shows that differences between batches (for which the scan dates are a
proxy) are the main drivers of differences in gene expression, more so than the clinically relevant difference
between preeclampsia and preterm samples. Note that the investigators at least took care to have more or
less equal numbers of preeclampia and preterm samples for each scan date, which means that batch and
‘clinical’ effects are not confounded.

3 Differential expression
Question 15 What would the effect of the observed batch effects on determining which genes are differentially
expressed between preeclampsia and preterm samples?

Answer

Batch effects are likely to increase variability and will therefore probably lead to higher p-values for
most genes in the comparison of preeclampsia and preterm samples.

For data that is available at GEO, an easy initial differential expression analysis can be performed using
GEO2R. Go to GSE14722 and click on ‘Analyze with GEO2R’ at the bottom of the page.

1. Select GPL96 which corresponds to the HG-U133A chip.
2. Click ‘Define groups’ and enter names for the groups of Samples you plan to compare, e.g., preeclampsia

and preterm.
3. Assign Samples to each group. Highlight Sample rows then click the group name to assign those Samples

to the group. Use the Sample metadata (title, source and condition) columns to help determine which
Samples belong to which group.

4. Click ‘Top 250’ to perform the calculation with default settings.
5. Results are presented as a table of genes ordered by significance. The top 250 genes are presented and

may be viewed as profile graphs. Alternatively, the complete results table may be saved.

Question 16 How many probesets are differentially expressed with an adjusted p-value <0.05?

Answer

Save the results and open the file in Excel (and use English settings for decimals); 32 probesets are
differentially expressed.

Of course, you can do a very similar analysis directly in R. First, we will perform a two-sample t-test as a
simple way of identifying genes that are differentially expressed. We use the function rowttests to perform
row-by-row (=gene-by-gene) tests for a significant difference in mean expression between the preeclampsia
and preterm samples.
exprs(eset): extracts the expression values
tt <- rowttests(exprs(eset),as.factor(pData(eset)$condition))
Inspect the first rows of the matrix tt
head(tt)

statistic dm p.value
1007_s_at 4.6257518 0.441970077 0.0001456704
1053_at 0.1943415 0.007722255 0.8477762474
117_at -0.4838556 -0.044590784 0.6334956740
121_at -0.4327096 -0.029681285 0.6696371316

13

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14722

1255_g_at 0.9359909 0.058845777 0.3599176994
1294_at 0.1918253 0.012752236 0.8497217758

Number of rows and columns of tt
dim(tt)

[1] 22283 3

The matrix tt contains 22283 rows, one for each probeset, and three columns describing the t-statistic,
difference between the means and the p-value, respectively. Take a look at the histogram of resulting p-values
using the function hist:
If you don't see a plot appearing, execute dev.off() in the console one (or more) times till you get 'null device 1'
hist(tt$p.value,breaks=50,col="orange",main="nominal p-values")
Number of probesets with p < 0.05
sum(tt$p.value<0.05)

[1] 1070

nominal p−values

tt$p.value

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0

Apparently, 1070 probesets are differentially expressed with a p-value < 0.05.

Question 17 Is this a realistic way of determining which probesets are differentially expressed?

Answer

No, performing a large number of hypothesis tests (22283 in this case) potentially leads to a large
number of falsely significant genes. In fact, just by chance one would expect 0.05*22283 = 1114 genes
with a p-value < 0.05. Many methods have been devised to deal with this problem of multiple testing
and most of these have been implemented in R.

Here, we use the function p.adjust to either control the family-wise error rate using the Bonferroni correction
or the false discovery rate with Benjamini-Hochberg:

14

p.bonferroni <- p.adjust(tt$p.value,"bonferroni")
sum(p.bonferroni<0.05)

[1] 1

p.fdr <- p.adjust(tt$p.value,"fdr")
hist(p.fdr,col="yellow",main="FDR corrected")
sum(p.fdr<0.05)

[1] 11

FDR corrected

p.fdr

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
10

00
0

15
00

0
20

00
0

Question 18 Explain why using the false discovery rate more probesets have an adjusted p-value < 0.05
than when using a Bonferroni correction (11 versus 1, respectively).

Answer

Bonferroni correction controls the family-wise error rate wich is far more conservative than the false
discovery rate.

David Robinson wrote a nice blog post on the interpretation of of (unadjusted!) p-value histograms.

Next time, we’ll continue with the analysis of this dataset. We’ll take batch effects into account and see what
we gain from it, and we’ll perform some pathway analyses.

15

http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

	Unsupervised methods
	Quality control
	Differential expression

