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Abstract

Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with
recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor
genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may
thus be an important determinant in breast cancer development and progression. To investigate if silencing of
claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217
breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA).
Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that
methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+) breast
cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in
most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed
that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell
lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation
is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+
tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic
strategy in this subtype of breast cancer.
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Introduction

Tight junctions are responsible for some of the defining
characteristics of epithelial cells and tissues. They form a tight
seal between adjacent cells that restricts paracellular transport
(gate function) and separates the apical and basolateral
domains of the plasma membrane to maintain cell polarity
(fence function). These dynamic structures respond to a variety
of environmental, physiological and pharmacological cues, and
it is well accepted that their dysfunction or disruption, and the
ensuing loss of tissue organization contribute to the
development and progression of cancer [1–3]. The three
principal components of tight junctions are occludin, claudins
and junctional adhesion molecule (JAM), but only claudins are
considered indispensable for tight junction formation [1–5].
Twenty-seven human claudins have thus far been identified [6].

The specific pattern of expression depends on tissue type and
stage of development [1,2,6], or on the specific disease
associated with dysregulation and tight junction disruption
[1–3,7]. Several studies have analyzed the role of claudin 1
(CLDN1) in epithelial physiology as well as in cancer
development and metastasis (reviewed by Gupta and Ryan [1]
and Myal, Leygue and Blanchard [2]). Both downregulation and
overexpression of claudin 1 have been associated with
tumorigenesis, suggesting that claudin 1 may alternatively
function as a tumor suppressor or as an oncogene. For
example, in papillary thyroid tumors, oral squamous cell
carcinoma, melanoma, ovarian, colon and gastric cancer
overexpression of claudin 1 has been associated with
aggressiveness and increased malignant phenotype.
Conversely, in esophageal, prostate and lung cancer loss of
claudin 1 correlates with cancer progression, invasion,
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metastasis, and shorter disease-free survival [2]. In breast
cancer, expression of claudin 1 appears to vary according to
the molecular subtype [2,7,8]. Claudin 1 overexpression has
been observed in some estrogen receptor negative (ER-),
basal-like breast cancers [7,8]. However, the most prominent
role for claudin 1 in breast cancer appears to be that of tumor
suppressor. Claudin 1 expression is low or absent in most
breast cancer samples and cell lines, in sharp contrast with the
normal mammary epithelium where this protein has a typical
apicolateral membrane localization [2,7–11]. Moreover, loss of
claudin 1 correlates with breast cancer recurrence, metastasis,
and reduced survival [12,13]. Claudin 1 downregulation seems
more prominent in ER+ [8,14] or ER+/HER2+ luminal [7,14]
breast cancers, but is also a feature of some basal-like breast
cancers including those belonging to the “claudin-low” subtype,
which have low levels of claudin 1, 3, 4, 7 and 8 and poor
prognosis [7,15]. Additional evidence of a claudin 1 tumor
suppressor role comes from in vitro studies showing that anti-
claudin 1 antibodies promote transformation of MCF‑12A
breast epithelial cells [16] and re-expression of claudin 1
induces apoptosis in tridimensional cultures of MDA‑MB‑361
breast cancer cells [17]. The mechanisms responsible for
decreased claudin 1 expression are not completely understood
and neither the coding sequence nor the promoter region of
claudin 1 appear to be mutated in either sporadic or hereditary
breast cancer patients, or in breast cancer cell lines [10].
Methylation of CpG dinucleotides within a gene promoter
region is a well characterized epigenetic mechanism
responsible for the silencing of tumor suppressor genes [18].
DNA promoter methylation has been associated with the
silencing of claudin 4 in bladder carcinoma [19] and claudin 6
and 7 in breast cancer [20,21], and methylation of the claudin 1
promoter has been reported in the colon cancer cell line
HCT116 [22], which does not express claudin 1. Moreover,
elevated methylation and low expression of claudin 1 were
observed in breast cancer samples from The Cancer Genome
Atlas (TCGA) [23]. To investigate if claudin 1 downregulation
has an epigenetic etiology in human breast cancer we
compared gene expression and methylation data from 217
patient samples available through TCGA [23] and from 26
breast cancer cell lines analyzed in our laboratory. Our analysis
shows that DNA promoter methylation is associated with
downregulation of claudin 1 in a subgroup of breast cancers
that include mostly ER+ tumors. Moreover we demonstrated
the causality of this link by showing that treating human breast
cancer cell lines with the DNA demethylating drugs azacitidine
and decitabine results in increased claudin 1 expression and in
its localization to the cell surface, which can potentially lead to
the restoration of normal polarized growth [4,5] or to tumor
suppression via apoptosis [17].

Materials and Methods

Cell lines
All cells lines were obtained from ATCC (Manassas, VA,

USA) except SUM 149PT and SUM 159PT [24] (generously
donated by Dr. Steve Ethier), and EFM19 and EFM192A
(DSMZ collection, Braunschweig, Germany; generously

donated by Dr. Dennis Slamon). Standard culture conditions
are summarized in Supplementary Table S1; three-dimensional
(3D) matrigel cultures were prepared as previously described
[25].

Analysis of gene expression and methylation
Gene expression and DNA methylation data obtained from

human primary breast cancer samples and matched normal
breast tissue samples using the Agilent G4502A (Agilent
Technologies) and the Infinium HumanMethylation450
(Illumina, Inc.) microarray platforms was downloaded from
TCGA [23]. Gene expression and DNA methylation analysis of
breast cancer cell lines was performed at the microarray core
of The Sidney Kimmel Comprehensive Cancer Center at Johns
Hopkins using the Agilent G4112F and the Infinium
HumanMethylation450 microarrays as previously described
[26]. The microarray data was analyzed using R (http://www.r-
project.org) and the limma package in Bioconductor [27] as
previously described [26] and deposited in the GEO database
under accession numbers GSE44836 and GSE44837.
Statistical tests and generation of heat maps, scatterplots, and
boxplots, were performed in R using standard functions
included with the base distribution. Quantitative Real-Time
PCR analysis (qRT-PCR) of claudin 1 mRNA expression in
breast cancer cell lines was performed on a 7500 Real-Time
PCR System, using cDNA generated with the High Capacity
cDNA Reverse Transcription Kit, TaqMan Gene Expression
Master Mix, the Hs00221623_m1 TaqMan Gene Expression
Assays and the Human RPLP0 Endogenous Control (Life
Technologies, Grand Island, NY, USA). Methylation specific
PCR (MSP) was performed on bisulfite-treated DNA (EZ DNA
methylation kit, Zymo Research, Irvine, CA, USA) as previously
described [28]; primers were designed using MSPPrimer [29]
and the sequences are given in Supplementary Table S2.

Flow cytometry
Fluorescence-activated cell sorting (FACS) was performed in

duplicate on a BD Bioscience FACSCalibur. Single cells
suspensions obtained by enzymatic digestion using 0.05%
trypsin (Life Technologies, Grand Island, NY, USA) were
labeled with a monoclonal antibody for human claudin 1
conjugated with Alexa Fluor 488 (Clone 421203; R&D
Systems, Minneapolis, MN, USA) according to the
manufacturer’s instructions.

Results and Discussion

Gene expression data from the Agilent G4502A microarray
with matched DNA methylation data from Infinium
HumanMethylation450 microarray was available for 217 breast
cancer patient samples in TCGA [23]. Matched normal tissue
was available for 40 of these samples. The
HumanMethylation450 microarray includes 13 probes for
claudin 1. Six of these probes are located within a CpG island
that extends across the transcription start site (TSS), one of the
remaining seven probes is upstream of the CpG island and six
are downstream (Figure 1). One probe within the CpG island
(cg24550865) was excluded from the analysis because of a
SNP in the target sequence.

Epigenetic Silencing of Claudin 1 in Breast Cancer
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In many of the breast cancer samples and in all the normal
tissue samples claudin 1 methylation is low within the CpG
island and high outside the CpG island, which is not indicative
of epigenetic silencing (Figure 2A). Claudin 1 expression varies
considerably in these samples and might be controlled by
transcription factors such as Slug and Snail, which are key
markers of epithelial-mesenchymal transition (EMT) and have
been shown to affect claudin 1 [30]. Most ER-breast cancer
samples have low claudin 1 methylation at the promoter CpG
island and some of them have the highest claudin 1 expression
in the whole cohort, consistent with previous reports of
elevated claudin 1 in ER-, basal-like breast cancer [2,7,8].
These ER-, basal-like clusters also stand out for having
stronger DNA methylation than other breast cancer samples at
the most distal site, 15470 nt from the transcription start of
claudin 1. However, methylation at this particular site is present
in some of the normal breast tissue samples as well (Figure
2A). Interestingly, we also observed clusters of breast cancer
samples with methylation of the claudin 1 promoter CpG island
(Figure 2A). These included mostly ER+ samples with lower
claudin 1 expression, which is indicative of epigenetic silencing.
Since we have not analyzed normal tissue from cancer-free
individuals we cannot exclude that the DNA methylation pattern
of the matched normal breast tissue is also somewhat altered
because of a cancer field effect [31,32]. However, methylation
of the claudin 1 CpG island is generally low in all the normal
breast tissue samples with very few outliers, which is indicative
of a normal methylation pattern for an expressed gene. In
contrast, the breast cancer samples are much more variable
and include samples with significantly higher methylation at
each CpG island site (Figure 2B, P < 0.00001 by Student’s t-

test). To estimate the proportion of breast cancer samples with
methylation of the claudin 1 CpG island we considered
methylated any sample with a beta value (ratio of methylated
DNA to total DNA) exceeding the corresponding mean value
for normal breast tissue by more than three standard
deviations. Based on this threshold, which was established
individually for each probe, 38.5% of the breast cancer
samples have at least one methylated site within the claudin 1
CpG island and 17.4% are methylated at two or more sites.
There was significant inverse correlation between gene
methylation and expression for three of the five sites, indicating
that increased methylation at these sites is associated with
reduced claudin 1 expression (Table 1). To evaluate the
importance of DNA methylation as a mechanism of silencing
claudin 1 expression in breast cancer, we used a logistic
regression model estimating the probability of methylation as a
function of the gene expression for these three sites (Figure
2C). Depending on the specific site, DNA methylation accounts
for 30-40% of the tumors with the lowest level of gene
expression, decreasing to approximately 20% at median
expression and to about 5% for tumors with the highest
expression levels (Figure 2C). These data indicate that in the
absence of CpG island methylation claudin 1 is regulated by
other factors, but it is also downregulated or silenced through
the methylation of its CpG island in a subset of breast cancers.

To obtain experimental evidence for the causal role of DNA
methylation in claudin 1 silencing we replicated our analysis in
breast cancer cell lines, which can be treated in vitro with
demethylating agents to achieve re-expression [18]. We
analyzed twenty-six breast cancer cell lines using the Agilent
G4112F gene expression microarray and the Infinium

Figure 1.  Map of the claudin 1 CpG island and associated methylation probes.  Claudin 1 (CLDN1) mRNA is depicted on top
with arrows to indicate the orientation of the gene; the thicker sections represent the coding sequence, the medium sections
represent the untranslated exon regions, and the thinner sections represent the introns. The genomic region encompassing claudin
1 is represented in two different scales; the numbers indicate the distance from the TSS in nucleotides. The vertical arrows mark the
position of the probes included in the Infinium HumanMethylation450 microarray. The probe excluded from the analysis because of
a SNP is indicated as a dashed arrow. The grey box indicates the location of the CpG island. Individual CpG sites are marked as
thin vertical marks in the magnified map.
doi: 10.1371/journal.pone.0068630.g001
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HumanMethylation450 microarray (Figure 3A). Similar to what
we observed in the breast cancer samples, methylation of the
CpG island correlates with claudin 1 expression in the cell
lines, with the most significant Spearman’s rank coefficient at
the sites located 300 and 54 nt after the transcription start
(ρ = -0.6656, and -0.7361 respectively, P<0.001). Overall, the
methylation pattern of these breast cancer cell lines resembles
that of the TCGA cohort. Half of them form a cluster

characterized by low methylation in the CpG island and high
methylation outside the CpG island (Figure 3A, group IV).
Claudin 1 expression varies considerably in this group, which
includes cell lines of various ER/HER2 status. The second
larger cluster is composed mostly of ER-, basal-like cell lines,
which feature some loss of methylation at sites downstream of
the CpG island (Figure 3A, group II). This group includes cell
lines with the highest expression of claudin 1, which may be

Figure 2.  Methylation of claudin 1 is associated with loss of expression in human breast cancer.  A: cluster analysis and
heat map of claudin 1 methylation (top), histogram of claudin 1 mRNA expression (middle), and ER/HER2 status (bottom) for 217
samples of invasive breast carcinoma and 40 matched normal tissue samples from TCGA; the turquoise dashed boxes mark three
clusters of samples with methylation of the claudin 1 CpG island; the orange dashed boxes mark two clusters of ER-, basal-like
samples. B: box plot of methylation of the claudin 1 CpG island in the same TCGA samples; T, tumors; N, normal. C: dot plots of
claudin 1 gene expression and methylation for the three CpG island sites that have significant Spearman’s correlation coefficients
(the position of each probe is noted in the upper right corner); the horizontal line marks the mean methylation value of normal
samples plus three standard deviations, which is taken as threshold for methylation; the curve represents the probability of
methylation as a function of expression level estimated by fitting a logistic regression model using the logit link function. DNA
methylation is shown as beta values, which are the ratio of methylated DNA to total DNA: a value of 1 indicates 100% methylation.
doi: 10.1371/journal.pone.0068630.g002
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representative of the claudin-high subtype of breast cancer
[2,7]. Two cell lines (HCC1419 and HCC1500) have very low
claudin 1 expression and are under-methylated at the distal
sites and partially methylated at the CpG island (Figure 3A,
group I). The methylation patterns of these two cell lines
somewhat resemble that of some of the TCGA breast cancer
samples (Figure 2A, leftmost samples), although TCGA
samples that are demethylated at non-CpG island sites are
mostly devoid of methylation within the CpG island as well.
Four cell lines stand out for being methylated at the claudin 1
CpG island: HCC1569, MDA‑MB‑453, ZR‑75‑30, and BT‑474
(Figure 3A, group III). Although two of these cell lines are ER-,
this methylation pattern resembles that of the clusters of
claudin 1-low, mostly ER+ breast cancer samples from TCGA,
in which claudin 1 appear to be epigenetically silenced.
Consistently, the microarray data indicate that expression of
claudin 1 is very low in these four cell lines. The relative
abundance of ER-cell lines in this group might be a result of the
high proportion of ER-cell lines in the cohort compared to the
frequency of human ER-breast cancer. All the cell lines of this
group are HER2+; however we did not identify a similar
correlation with HER2 status in the TCGA samples. We
validated claudin 1 promoter methylation by MSP, and gene
expression by qRT-PCR for three of these cell lines plus lines
ZR‑75‑1 and EFM19 from group II and IV, respectively (Figure
3B). The non-tumorigenic mammary epithelial cell line
MCF 10A was added as reference for claudin 1 expression.
The analysis confirmed that both ZR‑75‑1 and EFM19 are not
methylated at the claudin 1 promoter CpG island, and while
ZR‑75‑1 cells express twice as much claudin 1 mRNA as
MCF 10A, the expression of this gene in EFM19 is almost
undetectable (Figure 3B). Consistent with the microarray data,
claudin 1 expression is low or absent in MDA‑MB‑453,
HCC1569 and BT-474 cells, which are methylated to different
degrees at the claudin 1 CpG island (Figure 3B).

We used the demethylating agents decitabine (DAC) and
azacitidine (AZA) to further demonstrate that DNA methylation
is responsible for claudin 1 silencing in the breast cancer cell
lines MDA‑MB‑453, HCC1569 and BT‑474. Decitabine and
azacitidine are distinct cytidine analogs that are used clinically
for the treatment of patients with myelodysplastic syndromes
and acute myeloid leukemia (AML) [33,34]. As a
ribonucleoside, azacitidine is incorporated into both RNA and
DNA, while decitabine, a deoxyribonucleoside, is incorporated
solely into DNA) [35]. Both act to inhibit DNA
methyltransferases [36,37], and to induce demethylation of
DNA and re-expression of methylated and silenced genes [38];
however, decitabine shows equivalent activity at doses
approximately 2-10 fold lower than azacitidine [18]. Cultured
cells were treated daily for three days with decitabine (0.2 µM
and 1µM) or azacitidine (1µM and 5µM). Decitabine caused re-
expression of claudin 1 in MDA‑MB‑453, HCC1569 and
BT‑474 cells; however, HCC1569 and BT‑474 cells achieved
the higher level of expression, corresponding to approximately
40% of that of MCF 10A cells (Figure 3C). This represents a 2-
fold increase for BT‑474 cells and a 6.6-fold increase for
HCC1569 (P<0.0001). MDA‑MB‑453 cells had the lowest basal
expression of claudin 1 among these cell lines, and although
the gene was upregulated over 400 times by treatment with
1µM decitabine (P<0.0001), the overall level of expression
remained lower than in the other two cell lines (Figure 3C).
Treatment with azacitidine resulted in a similar upregulation of
claudin 1 and was most effective in HCC1569 cells where it
caused an 11.6-fold increase in expression (P<0.0001).
Similarly to decitabine, azacitidine upregulated claudin 1 in
MDA‑MB‑453 cells (up to 38.7-fold, P<0.0001) but the overall
amount of mRNA remained low compared to the other cell
lines. Re-expression of claudin 1 protein on the surface of
treated HCC1569 and MDA‑MB‑453 cells was confirmed by
flow cytometry. Similar to what was observed by qRT-PCR
analysis, decitabine caused an increase in claudin 1 signal in
both cell lines (Figure 3D, empty arrows) and 5 µM azacitidine
was again the most effective treatment in HCC1569 as it
caused an increase in the proportion of claudin 1-positive cells
compared to the untreated controls (Figure 3D, filled arrow). To
confirm that the re-expression of claudin 1 could be ascribed to
demethylation of its promoter CpG island, we analyzed claudin
1 methylation by MSP in the cells treated with 1µM decitabine,
as this particular treatment had consistently caused re-
expression in all the cell lines tested. MSP analysis shows that
the MDA‑MB‑453 has the strongest methylation of the
claudin 1 promoter among these cell lines, and although
decitabine was effective, there was considerable residual
methylation after treatment (Figure 3E). Conversely, in the less
methylated HCC1569 and BT‑474 cells treatment results in a
less pronounced upregulation but in a higher overall expression
of claudin 1. Thus, the methylation status of the claudin 1
promoter correlates well with both basal expression and
response to treatment, which is consistent with epigenetic
regulation. As a control, we treated the EMF19 cell line, which
is not methylated at the claudin 1 CpG island according to both
the microarray and MSP analysis. As expected, neither drug
had significant effect on claudin 1 expression in EMF19 cells
(Figure 3C, E).

Table 1. Methylation of the claudin 1 promoter CpG island
in invasive breast carcinomas and normal breast tissue.

Probe ID
Distance
from TSS

Methylation (beta
value)

Methylated
tumorsb

Correlation with
expressionc

  Normala Tumora   

cg15105660 300
0.15 ±
0.05

0.20 ±
0.15

26% -0.19 P=0.00395

cg08770122 54
0.03
±0.01

0.07 ±
0.11

21% -0.24 P =0.00037

cg14310674 12
0.02 ±
0.00

0.04 ±
0.08

13% -0.19 P =0.00407

cg21919136 -8
0.05 ±
0.02

0.07 ±
0.10

12% -0.11 P =0.09656

cg07661818 -15
0.02 ±
0.00

0.04 ±
0.09

14% -0.13 P =0.06255

a. Average ± standard deviation;
b. beta values exceeding the mean value of normal breast tissue by more than
three standard deviations;
a. Spearman’s rank correlation coefficient and Student's t-test. Beta values are the
ratio of methylated DNA to total DNA: a value of 1 indicates 100% methylation.
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Figure 3.  Methylation of claudin 1 is associated with loss of expression in breast cancer cell lines.  A: cluster analysis and
heat map of claudin 1 methylation (top), histogram of claudin 1 mRNA expression (middle), and ER/HER2 status [39] (bottom) in
breast cancer cell lines; specific clusters are marked with roman numbers and separated by dashed lines; gene expression is
relative to the average of all cell lines. B: Validation of claudin 1 promoter methylation by MSP (top), and gene expression by qRT-
PCR (bottom) in selected cell lines; the non-tumorigenic mammary epithelial cell line MCF 10A was added as reference for gene
expression; u, unmethylated; m, methylated. C: qRT-PCR analysis of claudin 1 expression in breast cancer cell lines treated with
decitabine (DAC) or azacitidine (AZA); claudin 1 expression in MCF 10A cells was used as reference (100% expression). D: FACS
analysis of claudin 1 surface expression in breast cancer cell lines treated with decitabine (DAC) or azacitidine (AZA); the empty
arrows indicate increase fluorescence (claudin 1 positivity) in treated cells, the filled arrow indicates an increase in the proportion of
a defined cell population that expresses claudin 1. E: MSP analysis of claudin 1 promoter methylation in breast cancer cell lines
treated with 1µM DAC; u, unmethylated; m, methylated.
doi: 10.1371/journal.pone.0068630.g003
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To investigate if treatment with decitabine or azacitidine
affects the phenotype of these cells in a manner consistent with
re-expression of claudin 1, we cultured HCC1569 and
MDA‑MB‑453 cells in a 3D matrigel matrix. Untreated cells
formed large undifferentiated cell aggregates characteristic of a
transformed phenotype. In contrast, cells treated with either
decitabine or azacitidine formed few if any 3D colonies (not
shown). Although this assay cannot discriminate between the
numerous anti-tumorigenic effects described for decitabine and
azacitidine [26] and that specifically due to re-expression of
claudin1, this result is consistent with the previous observation
that re-expression of claudin 1 induces apoptosis in 3D breast
cancer cell cultures [17].

Conclusions

Our analysis of the TCGA data shows that there is a
significant correlation between downregulation of claudin 1
expression and methylation of its promoter CpG island in a
subset of breast cancer. In the absence of promoter
methylation, the expression of claudin 1 varies considerably,
and might be regulated by transcription factors such as Slug
and Snail, as previously described [30]. Claudin 1 expression is
highest in some ER-samples, which is consistent with previous
reports showing elevated claudin 1 expression in this subtype
of breast cancer [2,7,8]. In the samples that have a methylated
claudin 1 promoter, claudin 1 expression is low or absent,
which is consistent with epigenetic silencing. These are mostly
ER+ samples, suggesting that claudin 1 promoter methylation
is associated with this subtype in particular. Breast cancer cell
lines recapitulate these phenotypes and we identified cell lines
in which claudin 1 is silenced through promoter methylation as
well as others in which claudin 1 is not silenced and is instead
overexpressed. Treatment of claudin 1-negative cell lines with

demethylating agents such as decitabine or azacitidine causes
re-expression of claudin 1 mRNA as well as increased
claudin 1 protein on the cell surface. Moreover, we observed
that both decitabine and azacitidine disrupt the growth of breast
cancer cells in matrigel. These drugs are known to have
various anti-tumorigenic effects [26], thus we cannot conclude
that this inhibition of growth is due specifically to tumor
suppression by claudin 1. However, our results concordantly
indicate that DNA promoter methylation is causally associated
with downregulation of claudin 1 in a group of breast cancers
that include mostly ER+ tumors. Given the supposed tumor
suppressor role of claudin 1 in this subtype of breast cancer
[7,8,14], epigenetic therapy to restore claudin 1 expression
might represent a viable therapeutic strategy.
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